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Abstract

Sequence Labelling using Distributional Semantic Vectors
and Conditional Random Fields

Melanie Tosik

The aim of this report is to outline the research that has been carried out during a three-month
summer internship at Textkernel in Amsterdam, The Netherlands.

The general objective of the project was to improve the resume parsing model for German. By
developing a novel approach to information extraction using sequence labelling, we obtain
promising results indicating significant improvements over the current baseline model. In
addition to project realisation and overall findings, professional and personal experiences are
presented in the course of this report.

Directed by: Carsten Lygteskov Hansen
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About

1.1 Textkernel

In 2001, Textkernel emerged as a commercial R&D spin-off of research in natural language
processing and machine learning at the universities of Tilburg, Antwerp and Amsterdam, and
quickly developed into a cutting-edge software company providing multilingual recruitment
technology in 16 languages for more than 1000 organisations worldwide.

Today, it is the biggest artificial intelligence lab of the European HR sector, employing
over 50 experts in language technology and software engineering specialised in information
extraction, document understanding, web mining, and semantic searching and matching.

During the internship, we aimed at the development of the Extract! CV parsing software.
The Textractor team behind it currently consists of six research engineers, mainly con-

cerned with the automatic extraction of relevant information from Curriculum Vitæs (resumes
and profiles of business-oriented social networking platforms like LinkedIn or Xing) and job
vacancies. Together with semantic job matching, the extraction services process around 10
million documents per year.

1.2 Internship Objective

The overall goal of the internship was to explore new methods of improving CV parsing
for German documents. The enhancements should thereby become generalisable to all lan-
guages, advancing the production system as a whole.

Within three months, we experimented with a novel approach that integrates distributional
semantic word vectors as features for a probabilistic Conditional Random Field (CRF) model
performing the task of segmenting and labelling the sequenced data.

Since the infrastructure for the new model architecture had been provided and proven
for a few test runs on English CV data, we focused on answering the research question by
starting with an extended investigation of the German phrase models.
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Project Realisation

2.1 Pipeline Architecture

To understand the focus and the outcome of the work put on display, it is important to have
an overview of the data model at large.

Given that in this case the task is to extract structured information in the form of particular
phrases like name or address, the pipeline architecture is designed as illustrated in Figure 2.1.
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Figure 2.1: Phrase extraction pipeline architecture.

Following the preprocessing of each CV, the language of its content is determined in order
to apply the appropriate language models in a cascaded fashion.

Afterwards, the language–specific section model segments the document into the follow-
ing sections: Cover Letter Section, Personal Section, Education Section, Experience Section,
Skills Section and Extracurricular Section. Not all sections are present in every document.

Phrase models then extract the detailed information from the corresponding section.
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A working example of personal phrase extraction for German is illustrated in Figure 2.2.

Lebenslauf      Volker Pieper

Adresse: Rombacherstraße 69

D - 73430 Aalen

Telefon: p: +49 (0)73 61  74 04 90 m: +49 (0)160 97408220

E-mail: omasoula@aol.com

Staatsangehörigkeit: deutsch

Familienstand: verheiratet

Geburtsdatum: 14. Juli 1962 in Oberhausen (Rheinland)

S c h u l b i l d u n g

1969 -1973 Roland-Grundschule Oberhausen

B e r u f s a u s b i l d u n g

09/1982 – 03/1985 Krupp Industrietechnik GmbH 

• Ausbildung zum Industriekaufmann,  Abschluss: 

Industriekaufmann

Duisburg

B e r u f s p r a x i s

12/2004 – dato Shell Energy Services GmbH

• Business Consultant für das Shell Energy Efficiency 

Programm in Deutschland mit den Aufgaben: - Identifizierung 

von Kunden mit Energiekosten >3-5 Mio. € p.a.;  - Akquisition 

von Neukunden für o.g. Programm; - Präsentationen und 

Vertragsverhandlungen auf Entscheiderebene.

Hamburg/Aalen

03/2000 – 11/2004 Deutsche Shell GmbH 

• Verkaufsleiter Strom und Energiedienstleistungen 

Süddeutschland mit den Aufgaben: - eigenverantwortlicher 

Aufbau dieses Geschäftsbereichs für Industrie- und 

Gewerbekunden;      - Schulungen und Einarbeitung der 

zugeordneten Außendienstmitarbeiter; - enge Zusammenarbeit  

mit Marketing und Business Development;  - Auftragsvolumen 

150 GWh/a; 

Aalen

01/1991 – 02/2000 • 06/1999 – 02/2000 Deutsche Shell Chemie GmbH als Key 

Account Manager PVC D/A/CH für die Bau- und 

Kabelindustrie mit den Aufgaben:  - Betreuung der 

volumenstärksten Key Accounts (Umsatz: € 15 Mio. – Volumen: 

22 KT); - Erstellung von Key Account-Plänen;  - Follow Up-

Sessions; - Vertragsverhandlungen auf Geschäftsführerebene

Aalen

• 08/1997 – 05/1999 als Key Account Manager EPS/PVC 

Deutschland für die Bau- und Verpackungsindustrie mit 

den Aufgaben: - Erstellung von Key Account-Plänen; - 

Vertragsverhandlungen auf Geschäftsführerebene;  - Mitarbeit  

bei der Entwicklung von neuen Verkaufsstrategien für EPS-

Produkte innerhalb eines europäischen Projektteams.

Aalen

• 01/1991 – 12/1993 im Verkaufsinnendienst  im Bereich 

Expandable Polystyrene (EPS) mit den Aufgaben: 

- Auftragsbearbeitung inkl. Mahnwesen und Kreditkontrolle  

sowie Reklamationsbearbeitung; - selbständige Betreuung der 

Kunden aus dem Bereich Poroton-Ziegel, deutschlandweit 

Eschborn

Seite 2

Figure 2.2: Personal section of an example CV and phrase extraction within the Sourcebox API.
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Graphische Modelle
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Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences.
An open circle indicates that the variable is not generated by the model.

sequence. In addition, the features do not need to specify
completely a state or observation, so one might expect that
the model can be estimated from less training data. Another
attractive property is the convexity of the loss function; in-
deed, CRFs share all of the convexity properties of general
maximum entropy models.

For the remainder of the paper we assume that the depen-
dencies of Y, conditioned on X, form a chain. To sim-
plify some expressions, we add special start and stop states
Y0 = start and Yn+1 = stop. Thus, we will be using the
graphical structure shown in Figure 2. For a chain struc-
ture, the conditional probability of a label sequence can be
expressed concisely in matrix form, which will be useful
in describing the parameter estimation and inference al-
gorithms in Section 4. Suppose that p�(Y |X) is a CRF
given by (1). For each position i in the observation se-
quence x, we define the |Y| � |Y| matrix random variable
Mi(x) = [Mi(y

�, y |x)] by

Mi(y
�, y |x) = exp (�i(y

�, y |x))

�i(y
�, y |x) =

�
k �k fk(ei,Y|ei

= (y�, y),x) +�
k µk gk(vi,Y|vi

= y,x) ,

where ei is the edge with labels (Yi�1,Yi) and vi is the
vertex with labelYi. In contrast to generative models, con-
ditional models like CRFs do not need to enumerate over
all possible observation sequences x, and therefore these
matrices can be computed directly as needed from a given
training or test observation sequence x and the parameter
vector �. Then the normalization (partition function)Z�(x)
is the (start, stop) entry of the product of these matrices:

Z�(x) = (M1(x) M2(x) · · · Mn+1(x))start,stop .

Using this notation, the conditional probability of a label
sequence y is written as

p�(y |x) =

�n+1
i=1 Mi(yi�1,yi |x)��n+1

i=1 Mi(x)
�

start,stop

,

where y0 = start and yn+1 = stop.

4. Parameter Estimation for CRFs
We now describe two iterative scaling algorithms to find
the parameter vector � that maximizes the log-likelihood

of the training data. Both algorithms are based on the im-
proved iterative scaling (IIS) algorithm of Della Pietra et al.
(1997); the proof technique based on auxiliary functions
can be extended to show convergence of the algorithms for
CRFs.

Iterative scaling algorithms update the weights as �k �
�k + ��k and µk � µk + �µk for appropriately chosen
��k and �µk. In particular, the IIS update ��k for an edge
feature fk is the solution of

�E[fk]
def
=

�

x,y

�p(x,y)
n+1�

i=1

fk(ei,y|ei
,x)

=
�

x,y

�p(x) p(y |x)
n+1�

i=1

fk(ei,y|ei
,x) e ��kT (x,y) .

where T (x,y) is the total feature count

T (x,y)
def
=

�

i,k

fk(ei,y|ei ,x) +
�

i,k

gk(vi,y|vi ,x) .

The equations for vertex feature updates �µk have similar
form.

However, efficiently computing the exponential sums on
the right-hand sides of these equations is problematic, be-
cause T (x,y) is a global property of (x,y), and dynamic
programming will sum over sequences with potentially
varying T . To deal with this, the first algorithm, Algorithm
S, uses a “slack feature.” The second, Algorithm T, keeps
track of partial T totals.

For Algorithm S, we define the slack feature by

s(x,y)
def
=

S �
�

i

�

k

fk(ei,y|ei ,x) �
�

i

�

k

gk(vi,y|vi ,x) ,

where S is a constant chosen so that s(x(i),y) � 0 for all
y and all observation vectors x(i) in the training set, thus
making T (x,y) = S. Feature s is “global,” that is, it does
not correspond to any particular edge or vertex.

For each index i = 0, . . . , n+1 we now define the forward
vectors �i(x) with base case

�0(y |x) =
�

1 if y = start

0 otherwise
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Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences.
An open circle indicates that the variable is not generated by the model.

sequence. In addition, the features do not need to specify
completely a state or observation, so one might expect that
the model can be estimated from less training data. Another
attractive property is the convexity of the loss function; in-
deed, CRFs share all of the convexity properties of general
maximum entropy models.

For the remainder of the paper we assume that the depen-
dencies of Y, conditioned on X, form a chain. To sim-
plify some expressions, we add special start and stop states
Y0 = start and Yn+1 = stop. Thus, we will be using the
graphical structure shown in Figure 2. For a chain struc-
ture, the conditional probability of a label sequence can be
expressed concisely in matrix form, which will be useful
in describing the parameter estimation and inference al-
gorithms in Section 4. Suppose that p�(Y |X) is a CRF
given by (1). For each position i in the observation se-
quence x, we define the |Y| � |Y| matrix random variable
Mi(x) = [Mi(y

�, y |x)] by

Mi(y
�, y |x) = exp (�i(y

�, y |x))

�i(y
�, y |x) =

�
k �k fk(ei,Y|ei

= (y�, y),x) +�
k µk gk(vi,Y|vi

= y,x) ,

where ei is the edge with labels (Yi�1,Yi) and vi is the
vertex with labelYi. In contrast to generative models, con-
ditional models like CRFs do not need to enumerate over
all possible observation sequences x, and therefore these
matrices can be computed directly as needed from a given
training or test observation sequence x and the parameter
vector �. Then the normalization (partition function)Z�(x)
is the (start, stop) entry of the product of these matrices:

Z�(x) = (M1(x) M2(x) · · · Mn+1(x))start,stop .

Using this notation, the conditional probability of a label
sequence y is written as

p�(y |x) =

�n+1
i=1 Mi(yi�1,yi |x)��n+1

i=1 Mi(x)
�

start,stop

,

where y0 = start and yn+1 = stop.

4. Parameter Estimation for CRFs
We now describe two iterative scaling algorithms to find
the parameter vector � that maximizes the log-likelihood

of the training data. Both algorithms are based on the im-
proved iterative scaling (IIS) algorithm of Della Pietra et al.
(1997); the proof technique based on auxiliary functions
can be extended to show convergence of the algorithms for
CRFs.

Iterative scaling algorithms update the weights as �k �
�k + ��k and µk � µk + �µk for appropriately chosen
��k and �µk. In particular, the IIS update ��k for an edge
feature fk is the solution of

�E[fk]
def
=
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,x)

=
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where T (x,y) is the total feature count

T (x,y)
def
=
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gk(vi,y|vi ,x) .

The equations for vertex feature updates �µk have similar
form.

However, efficiently computing the exponential sums on
the right-hand sides of these equations is problematic, be-
cause T (x,y) is a global property of (x,y), and dynamic
programming will sum over sequences with potentially
varying T . To deal with this, the first algorithm, Algorithm
S, uses a “slack feature.” The second, Algorithm T, keeps
track of partial T totals.

For Algorithm S, we define the slack feature by
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y and all observation vectors x(i) in the training set, thus
making T (x,y) = S. Feature s is “global,” that is, it does
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For each index i = 0, . . . , n+1 we now define the forward
vectors �i(x) with base case
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0 otherwise

Figure 2.3: Graphical structures of HMMs (left) and chain-structured CRFs (right) for sequences.

An overview of selected sections with extracted fields can be found in Appendix A.1.
For the purpose of improving the phrase models, we disabled section extraction to avoid

errors arising from a previous task and worked on gold annotated sections only.

2.2 Sequence Labelling using Conditional Random Fields

Customarily, Extract! CV Parsing relies on Trigrams’n’Tags (TnT) [1], an implementation of
a Hidden Markov Model (HMM) originally applied to Part–of–Speech (POS) Tagging. In a
nutshell, the model assigns a joint probability to paired observation and label sequences and
attempts to maximise the joint likelihood of training examples.

However, a generative model like this is not able to account for multiple interacting fea-
tures or long-range dependencies. Additionally, the handling of unknown words quickly be-
comes a problem since the lexical probabilities of words which are not present in the lexicon
can only be estimated by incorporating some other source.

To overcome these fundamental limitations, we turn to an alternative framework presented
in [2]. Instead of modelling fixed observations, a framework based on Conditional Random
Fields (CRF) models the joint probability of the entire sequence of labels given the obser-
vation sequence. While the generative model relies on word entities and their correspondent
part-of-speech tags, the CRF model uses word vector representations (cf. Section 2.3) and a
number of different, optional features whose weights can be traded off against each other.

In contrast to the HMM, transition probabilities no longer depend on the previous obser-
vation only, but on all available past and future observations as well. Consequently, the CRF
model architecture does not impose the strict independence assumptions that the HMM model
involves. Because the CRF model can take any possible feature into account, it is addition-
ally viable to integrate high-dimensional vector representations as features of the model. It
therefore covers a much larger number of words that would not be represented in the lexicon
of the HMM otherwise.

The critical difference between HMM and CRF is illustrated in Figure 2.3 (adapted from
[2]). Open circles indicate variables not generated by the model.

For our experiments we use CRFsuite1, an implementation of Conditional Random Fields
for labelling sequential data provided by [5].

1http://www.chokkan.org/software/crfsuite/
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

Figure 2.4: CBOW and Skip-gram architecture.

Since the software implements several training methods, we chose an appropriate learning
algorithm based on accuracy2 and the amount of time it takes to train the model. By default,
CRFsuite uses Limited-memory BFGS3 (L–BFGS) [4]. We switched to Stochastic Gradient
Descent (SGD) [7] after we obtained similar results in only half of the time.

2.3 Distributional Semantic Vectors

As described above, the CRF model learns based on a number of predefined features. The
standard configuration includes features that account for the beginning and end of a line,
unknown words, high frequency tokens, digits, single characters, multi spaces, capitalisation,
as well as the first and last token of each line. When the model is trained on annotated
training data, a binary decision is made as to whether the features are present for the current
observation or not.

While all of these basic features are useful to recognise patterns in both the layout and
the content of the CV, crucial information is added by integrating a distributional semantic
vector for each word instead of just the word itself.

Following [3], we use the Skip-gram model to compute continuous vector representations
of words learned by a neural network. Unlike the continuous bag-of-words model (CBOW),
which predicts a current word based on the context, the Skip-gram model classifies the current
word based on another word in the same sentence. By predicting surrounding words within
a certain range before and after the current word, the Skip-gram model yields better results
than the computationally less expensive CBOW approach.

Both architectures are illustrated in Figure 2.4 taken from [3].

2We evaluate using the common recall, precision and F1–Score metrics (character based).
3BFGS refers to the Broyden–Fletcher–Goldfarb–Shanno algorithm.
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Data source Number of documents Number of tokens Type of (German) data
Original CV sample 13k 23.7M Sample CVs
German Wikipedia 1.75M 538M Wikipedia (19–06–2014)
External vacancies 120k 41M Vacancies
Internal vacancies 200k 86M Vacancies
New CV sample 200k 145.5M Sample CVs
Combined sources 2.3M 833M All data sets combined

Table 2.1: Overview of datasets, their size and the type of data.

For all our experiments, we use the open source word2vec4 toolkit [3].

To verify the process of randomly sampling the size of the context window from a certain
range, we regenerate distributional semantic vectors from the same dataset in several inde-
pendent runs. When using the default value of a maximum skip length of 5 between words,
this randomisation does not affect the quality of the vectors beyond introducing a negligible
amount of noise.

In order to obtain the best vector representations for the specific task of labelling phrases
within certain sections (e.g. name and address for the personal section), we conduct a number
of experiments in which we test different settings for various parameters. The quality of the
vectors is measured in terms of the performance of the phrase models and thus strongly
dependent on the properties of the current production system.

2.3.1 Data source and amount of data
Data sources and information about size and type of the data are listed in Table 2.1.

Overall best vector representations for the phrase extraction tasks are generated from all
the data combined. Training the neural network on Wikipedia works equally well as using
the original batch of sample CVs, an important insight for the opening up of new markets for
which large amounts of training data are not yet available. Using vacancies (from either exter-
nal or internal sources) works as well as combining the original CV data with the Wikipedia
data. Enriching the original CV data with a larger sample of CV data steadily increases the
accuracy of the model. A plateau has not yet been reached.

To test the amount of data needed to get reasonable representations, we use the original
batch of sample CVs and experiment with 10%, 33%, 66%, 300%, 600% and 1000% of data.
Data sets are generated by either randomly downsampling or duplicating the original set
accordingly. While duplicating the data does not improve the initial word vectors, decreasing
the amount of CV data has surprisingly little effect: although the decline is incremental, it
only amounts to a ~3% drop for generating vectors from 10% of the data.

4https://code.google.com/p/word2vec/
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2.3.2 Vector size
[3] indicate that a larger dimensionality is beneficial when training on large data sets and
report the best results for word pair relationships for a vector size of 300 dimensions. Our
experiments evaluate results for 15, 50, 100, 300 and 450 dimensions on the original batch
of sample CVs. The baseline parameter is set to 150 dimensions. We find that a higher
dimensionality of the vector space does not improve the performance of the phrase models.
Best results are obtained by using 150 dimensions, additionally significantly reducing the
complexity of the computation.

2.3.3 External dataset
Apart from evaluating the vector representations on the CV parsing task, we apply them to
solve the semantic relatedness task on an external dataset to validate quality and generalis-
ability of the induced vector space.

The Gur3505 dataset for German contains 350 word pairs (involving nouns, verbs and
adjectives) along with their relatedness scores assigned on a discrete 0–4 scale by 8 subjects
with an inter–annotator agreement of 0.69.

We implement cosine similarity and evaluate the word vectors generated from the original
sample CVs, yielding a Spearman’s rank correlation of 0.23 with 146 unknown words for
which we can not induce a vector representation.

Since the dataset consists of 350 non-domain specific word pairs that word vectors gen-
erated from CV data do not cover in many cases, we proceed to learn them from the whole
German Wikipedia instead, reporting a Spearman’s correlation of 0.50 (and 27 unknown
words). This value is higher than any of the results6 presented in [8] but might be due to
the steady growth of the encyclopaedia. If we combine original CV and Wikipedia data, we
obtain a Spearman’s rank correlation of 0.52.

2.4 Phrase Models

2.4.1 German
To get an idea about the expressiveness of the two models and the kinds of errors they make,
we started on the PERSONAL PHRASE MODEL7 for German by comparing the extracted name
entities against the gold annotated entities. The pattern that we observed suggested that the
TnT model generally has a higher recall but over generates by including non-word characters
or other strings that are not actually targeted, whereas the CRF model has a higher precision
but fails to extract a considerable number of entities at all.

5https://www.ukp.tu-darmstadt.de/data/semantic-relatedness/
german-relatedness-datasets/

6The highest score using Wikipedia was ρ = 0.42 with a similarity measure following [6].
7Personal phrase model refers to the phrase extraction model for the personal section.
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Figure 2.5: Results obtained by the TNT baseline model and the current candidate model.

From this analysis we hypothesised that the low recall for the CRF model might be caused
by a large amount of unknown words in the vector space. We investigated the frequency
distribution throughout the training data for both models and found 5% of unknown words for
the CRF and 11% of unknown words for the TnT model. Moreover, we noticed a confusion
between address suffixes, and German names and months8.

We implemented additional features for street names and months and added gazetteers
containing male and female first names from multiple languages. It is still unclear what ex-
actly it is that the HMM–based model grasps but the CRF model utilising vector representa-
tions does not yet capture. However, as illustrated in Figure 2.5, the CRF model significantly
outperforms the TnT model on all the relevant fields extracted from personal sections.

For the EXPERIENCE PHRASE MODEL, we began with conducting a detailed error analy-
sis on the target of experience, denoting precise job titles.

After a substantial amount of flaws in the gold annotations impeded the evaluation, we
developed detailed annotation guidelines on how to correct them and fixed the training, de-
velopment and test partition with the help of the Data and Quality team.

Contrary to our expectations, correcting the most frequent types of annotation errors did
not improve the performance of the CRF model. However, another interesting property of
CRF that has not been mentioned yet is the amount of data required to train the model in
the first place. While the performance of the TnT model is strongly dependent on a large

8For instance, April, Juli and August can be either first names or months in German.
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Figure 2.6: Results obtained by the TNT baseline model and the current candidate model.

dataset to train on, the accuracy of the CRF model decreases by only ~3% if we train on (a
randomly sampled) 40% of the original dataset. This observation allowed for the exclusion
of an outdated batch of CVs (roughly 30% of the original dataset) from the training partition
without a decrease in performance.

Finally, we implemented new features for months, legal entities (like GmbH) and com-
mon job titles. We generated gazetteers for job titles and company names from external and
internal collection of vacancies and replaced the latter feature by integrating the extended
lists instead. Again, we report a higher performance for the CRF model than for the current
baseline model. The results are illustrated in Figure 2.6.

2.4.2 Portuguese
To confirm the generalisability of the CRF model, we subsequently ported the CRF model
to Portuguese. Since Textkernel is currently exploring the Brazilian market, the CV pars-
ing model for Portuguese is being investigated by the rest of the team, providing an ideal
opportunity to make use of the insights we gained so far.

In brief, we were indeed able to reproduce the results we reported for German. We gen-
erated word vector representations from the Portuguese Wikipedia as well as a new batch
of sample CVs. Trained on an equally new partition, the CRF model outperforms the TnT
baseline on both the personal and the experience section for all the relevant target fields.
Combining the data sources for the vector generation does not improve the results any fur-
ther.
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Summary, Conclusion and Future Work

During the internship, different approaches to multilingual CV parsing have been examined.
We developed a new model that relies on the conditional random fields framework. We

optimised parameters for representing each token in a high-dimensional vector space (data
source, amount of data, and vector size) as well as training parameters for the CRFsuite
(learning algorithm) and the actual training of the model (amount of data and features).

Compared to the HMM-based baseline model, the results of the CRF-based model com-
bined with distributional semantic vector representations are promising throughout languages
and different sections of target documents.

The main findings can be summarised as follows:

1. The CRF model clearly outperforms the baseline model.

2. Overall well-performing word vector representations are generated by:

(a) Using a large sample of CVs, if available;

(b) Combining all available data sources, otherwise.

3. Training the CRF model on vectors generated from Wikipedia data works equally well
as using CV data.

4. Compared to the baseline model, the CRF model works much better for a much smaller
set of training documents.

5. Integrating distributional representations of words highly improves the performance of
the CRF model.

Changing the gold annotations to correspond to the current state of the annotation guide-
lines eventually did not improve the overall performance of the CRF model. One could argue
in favour of the TnT results not being affected by the modified annotations at all. However,
the sensitivity of the CRF model together with the fact that it works well for much less (an-
notated) training data allows for the claim that it might be possible to gain even better results
by training on entirely flawless annotations. If for a particular language large data sets are not
available, it thus seems feasible to annotate a much smaller set of documents and still obtain
high accuracy results for the CV parsing task.

The above statements allow for many directions future work might pursue with regard to
the study of conditional random fields using distributional semantic vectors.
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To begin with, the issue of low recall is still not entirely solved. It could be examined
whether the gazetteers (especially for job titles) could be improved by applying further clean-
ing, or if introducing line-based features has any effect.

Continuing along the same lines, the CRF model is currently working on single tokens
only. Integrating compositionality for entire phrases could enable the system to recognise
patterns in multiword expressions and complex compositional structures as well.

From a research perspective, it might be worth investigating how the vector size is influ-
encing the representations in the vector space. Although we did not yield any improvements
of the model by setting the number of dimensions very high (300 and above), there might
still exist interesting properties of the corresponding representations that could be helpful for
solving more fine-grained tasks, for instance.

Another feature that could be integrated in the CRF model is the POS-tag of the current
word. Moreover, we are trying to bias the weights of the CRF to prevent the model from
guessing the most frequent class of a certain phrase whenever it lacks a sufficient amount of
feature information. An ensemble method combining the TnT model with the CRF approach
might lead to further improvements as well.

We are planning on writing up a research paper on the contribution of using word vector
representations instead of word entities as input for a CRF model for sequence labelling and
strongly encourage you to refer to the paper for further technical details.

13



Personal and Professional Experience

I have had the wonderful opportunity to spend the summer working within a throughout
inspiring research environment.

From the very beginning, Textkernel surprised me with the innovative and unconventional
way the company operates:

Upon arrival, an additional work station had already been set up. It would later be directly
connected to one of the 40–core computer clusters almost entirely dedicated to my research.

While the Textractor team is organising itself by the means of Scrum, an iterative and in-
cremental framework for agile software development, the team spirit is clearly characterised
by the ambition and open-mindedness of its members. The group’s schedule includes Tech
Talks, tutorials and reading groups on a regular basis.

The company culture at large is as informal as it is innovative. Textkernel provides free
lunches, chair massages and overall good equipment to all its employees. Ping pong, outdoor
lunches, and a lively Friday drinks tradition top off the usual 8–hour day that thankfully does
not usually start before 09:30 AM.

For the entire period of the project, Textkernel paid a competitive salary.
Additionally, I was invited to join everyone for the Textkernel Innovation Week – a week in

which each employee gets the chance to propose their own innovative idea and gather around
it a team of colleagues to realise it – that found its end with a company trip to Rotterdam.

During the internship, I genuinely enjoyed the novel experience of contributing towards
the products of a contemporary NLP company.

Using Git and Subversion, I quickly became more acquainted with current software ver-
sioning and revision control systems. Furthermore, I was familiarised with Perl as both the
coding weapon of choice and powerful command line tool.

In contrast to predominantly theoretical university studies, the possibility of actually ap-
plying state-of-the-art techniques on large data sets has certainly been a valuable experience
that highly benefited to my personal and professional development.

Textkernel researchers regularly attend academic conferences to remain at the cutting
edge of innovation and provide accurate, fast and reliable understanding of documents.

For the last week of the internship, I received generous funding to participate in Coling
2014, the 25th International Conference on Computational Linguistics, which was held in
Dublin and a great finish of my brief excursion to professional life.
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Appendix

A.1 Sections with Extracted Fields

Section Extracted field Equivalent
Personal name Full name

address Full address
birthday Date of birth
birthplace Place of birth
phonehome Home phone number
phonework Work phone number
fax Fax number
email Email address
marstat Marriage status
nationality Nationality
gender Gender

Experience experience Job title
expdescription Job description
experiencedate Period of time
experienceorgplace Company and location

Table A.1: Overview of selected sections and extracted fields
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