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Abstract

In this paper, we describe the architecture and
performance of three neural machine transla-
tion systems: a RNN based encoder-decoder
without attention, a RNN based encoder-
decoder with attention, and a CNN-RNN
based encoder-decoder with attention. Each
model is trained and tested on two language
pairs: Vietnamese to English, and Chinese to
English. We find that for Vietnamese-English,
the RNN encoder-decoder with attention per-
forms best, with a BLEU score of 25.37 on
the Vietnamese test set. For Chinese-English,
the best model architecture is the CNN-RNN
based encoder-decoder with attention. The
corresponding BLEU score is 22.10 on the
Chinese test set. The code is available from
the project GitHub repository1.

1 Introduction

Sequence-to-sequence models are powerful tools for
a multitude of tasks in natural language process-
ing. General purpose encoder-decoder frameworks
have successfully been applied to text summariza-
tion (Nallapati et al., 2016), conversational model-
ing (Vinyals and Le, 2015), video captioning (Venu-
gopalan et al., 2015), and even interpreting dialects
of Python (Zaremba and Sutskever, 2014).

Sequence-to-sequence models were particularly
transformative in machine translation (MT). Here,
the ability to map arbitrary-length input sequences
to arbitrary-length output sequences using a fixed-
size architecture is crucial because a simple mapping

1https://github.com/ds1011teamproject/
translation

from a single input token to the correct output token
rarely exists due to the ambiguity of language.

Statistical machine translation (SMT) systems
aim to overcome this limitation by explicitly max-
imizing the probability P(S|T ), i.e. choosing the
sentence S that is most probable given T , thereby
minimizing the chance of error (Brown et al., 1990).
This specification formalizes the notion of a number
of candidate translations, along with the need for a
decoder to select the most likely translation from the
model’s output probability distribution (Williams et
al., 2016). Typically, practical implementations of
SMT are phrase-based systems that translate se-
quences of words as atomic units (Koehn et al.,
2003). While conventional SMT can be effective,
it suffers from one major shortcoming: translation is
not a token-level function and requires (at least) the
context of the entire sentence.

Neural machine translation (NMT) is an end-to-
end learning approach that offers a key advantage
over phrase-based translation systems. Instead of
tuning several specialized sub-components, NMT
only requires a single large neural network model
that can both read an input sentence and predict a
correct translation. Specifically, NMT relies on re-
current neural network (RNN) models that are ar-
ranged in an encoder-decoder fashion. As described
in Bahdanau et al. (2014), the encoder first reads
and encodes a source sentence into an internal fixed-
length representation called the context vector. The
decoder then outputs the translation based on the
context vector. The entire system is jointly trained
to maximize the conditional probability of a correct
translation given the input sentence.

1

https://github.com/ds1011teamproject/translation
https://github.com/ds1011teamproject/translation


Figure 1: Encoder structure of RNNbase.

Figure 2: Decoder structure of RNNbase.

A common issue when training RNN models is
learning long-term dependencies. The solution is the
addition of the attention mechanism (Bahdanau et
al., 2014), which allows the model to search for parts
of the source sentence that are relevant to predicting
the target word at the current stage of decoding.

In this paper, we compare three variants on
Vietnamese-English and Chinese-English transla-
tion systems. First, we implement a RNN-based
encoder-decoder model, denoted by RNNbase.
Next, we introduce a RNN-based encoder-decoder
model with attention, denoted by RNNattn. Finally,
we replace the RNN encoder with a convolutional
neural network (CNN) in our third model, CNNattn.

2 Model architecture

2.1 RNN encoder-decoder without attention

The first model we implement is a RNN-based
encoder-decoder system with gated recurrent units
(GRU), with a single-layer bi-directional RNN as
encoder and a single-layer uni-directional RNN as
decoder.

Figure 3: Decoder computation at time t of RNNattn.

The initial hidden vector of the decoder is gener-
ated through a non-linear transformation on the last
hidden vector of the encoder (cf. Cho et al. (2014)):

h0 = tanh(V henc)

2.2 RNN encoder-decoder with attention
The RNNattn model is an extension of the
RNNbase model, with the addition of the attention
mechanism during the decoding stage. The atten-
tion layer generates a weight for each hidden state
in the encoder, which evaluates how important it is
for the next token to be translated. Therefore, at each
time step, the context vector ct is a weighted sum of
the encoder hidden vectors by attention weights, as
illustrated in Figure 3.

2.3 CNN-RNN encoder-decoder with attention
Finally, we introduce our third model: CNNattn.
In this model, the encoder is replaced a two-layer
convolutional encoder (Kalchbrenner et al., 2014).
In order to generate the context vector at the en-
coding stage, a non-linear transformation is applied
on the encoder hidden vectors, followed by a fully-
connected two-layer feed-forward network. For the
non-linear transformation, we choose to use the
hyperbolic tangent after experimenting with max-
pooling and rectified linear units as well. Other-
wise, we employ the same decoder that is used in
the RNNattn model (cf. Figure 3).

3 Experiment settings

3.1 Dataset
Our dataset consists of the pre-tokenized training,
validation, and test splits for the two language pairs:
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Figure 4: Encoder structure of CNNattn.

Vietnamese-English (Vi-En) and Chinese-English
(Zh-En). The data was adapted from the original
IWSLT 2012 and IWSLT 2013 workshop data.

In total, the Vi-En training split contains 133,317
sentences. The Zh-En split is 1.6 times larger and
contains 213,377 training sentences. Figure 5 shows
the sentence length distribution for the Vietnamese
and Chinese training data. Based on the plots, we
remove empty sentences during training and set the
sentence truncation length to 80 tokens to speed
up the computation. All experiments are executed
on the NYU high performance computing (HPC)
Prince cluster.

Figure 5: Distribution of number of tokens per sentence.

Hyperparameter Default setting
Vocabulary
Vocabulary size 25,000
Use fastText embeddings False
Freeze fastText embeddings False
Model
Embedding size 300
Hidden size 1,000
Number of layers (encoder) 1
Number of layers (decoder) 1
Number of directions (encoder) 1
Number of directions (decoder) 2
Kernel size (CNN) 3
Maximum sentence length 80
Training
Teacher forcing ratio 1.0
Beam search width 3
Number of epochs 25
Criterion NLLLoss

Optimizer Adam

Learning rate (encoder) 0.001
Learning rate (decoder) 0.001
Learning rate scheduler ExponentialLR

Gamma 0.95
Learning rate annealing True
Early stop True
Batch size 64

Table 1: Default hyperparameter settings for all models.

3.2 Model parameters
The default hyperparameters for all models are listed
in Table 1. In addition, we perform an ablation study
on the following parameters for each of the three
models:

1. Vocabulary size (25,000; 50,000; 100,000) and
using 300-dimensional, pre-trained fastText

word embeddings (Bojanowski et al., 2016)

2. Hidden size (500; 1,000; 2,000) combined with
the corresponding learning rate (0.002; 0.001,
0.0005)

3.3 Scoring metric
Our models are evaluated based on their respective
bilingual evaluation understudy (BLEU) scores (Pa-
pineni et al., 2002). BLEU is a common choice
for automatic MT evaluation because it is language-
independent, inexpensive, and efficient to compute.
The main idea behind the BLEU method is to use a
weighted average of variable length phrases that are
matched against one or more reference translations.
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BLEU scores typically range from 0 to 100, where
a score of 100 indicates a generated translation that
is identical to a reference translation. The reported
BLEU scores are calculated over the entire test set to
provide a reasonable estimate of the overall quality
of the output translations. Specifically, we use the
SacreBLEU Python module to compute the corpus
BLEU scores, which uses the standard four-gram
methodology (Post, 2018).

3.4 Search algorithms

In NMT, there are two widely adopted strategies to
generate new translations that approximately max-
imize the trained conditional probability: greedy
search and beam search.

Greedy search is a simple approximation that se-
lects the most likely token at each step in the out-
put sequence. Beam search keeps a set of top hy-
potheses for each step of the output sequence and
explores each of those hypotheses to determine the
overall most likely sequence. While greedy search
is more straightforward to implement, the resulting
output sequences are usually sub-optimal. Selecting
the top candidate at each time step effectively dis-
cards runner-up hypotheses that might end up more
probable when computed over the entire sequence.

Therefore, we also implement beam search. The
number of active candidates at any given step, also
called the beam width, is a hyperparameter that is
empirically evaluated on the validation set. In addi-
tion, we experiment with different methods of the
length penalty for the sentence score. The basic
methodology is to divide the log probability of each
resulting sentence by the length of the sentence; a
more advanced approach is to divide by a non-linear
function of length as described in Wu et al. (2016).

4 Results

4.1 Ablation study

We conduct a grid search over two pairs of param-
eters: vocabulary size and use of word embeddings,
as well as hidden size and learning rate. A subset
of the grid search results on the validation set are
shown in Table 2. The best parameter settings for
each model and language are stated in Table 3.

Overall, we find that a hidden size of 2,000 with
a learning rate of 0.0005 works well for all models.

Hyperparameter setting Vi-En Zh-En
RNNbase
Vocabulary size = 25,000 14.79 17.78
Vocabulary size = 50,000 19.06 17.42
Vocabulary size = 100,000 17.27 16.73
Hidden size = 500; LR = 0.002 14.24 15.52
Hidden size = 1,000; LR = 0.001 20.22 16.27
Hidden size = 2,000; LR = 0.0005 21.67 17.83
RNNattn
Vocabulary size = 25,000 25.50 15.01
Vocabulary size = 50,000 23.02 15.10
Vocabulary size = 100,000 19.80 15.97
Hidden size = 500; LR = 0.002 19.38 17.02
Hidden size = 1,000; LR = 0.001 25.09 17.57
Hidden size = 2,000; LR = 0.0005 26.03 18.57
CNNattn
Vocabulary size = 25,000 21.22 15.27
Vocabulary size = 50,000 16.36 17.28
Vocabulary size = 100,000 14.96 16.98
Hidden size = 500; LR = = 0.002 21.06 14.92
Hidden size = 1,000; LR = = 0.001 24.09 16.87
Hidden size = 2,000; LR = = 0.0005 23.57 17.59

Table 2: Results of the ablation study per model.

Integrating pre-trained fastText embeddings gen-
erally does not improve model accuracy, with one
exception: the CNNattn model for Chinese-English
does benefit from the addition of pre-trained word
embeddings.

Please note: For the remainder of this paper, all
results are based on the fine-tuned model parameter
settings in Table 3.

4.2 BLEU scores
Based on the results on the validation set, we first
determine the optimal beam width to be 5 for all of
our models. Using beam search of width 5 and the
best models after tuning hyperparameters, the best
final BLEU scores on the Vietnamese and Chinese
test splits are stated in Table 4. A number of selected
example translations are provided in Table 5.

5 Analysis

We observe several phenomena during the model se-
lection and hyperparameter optimization that have
significant impact on the final results. We document
them in this section and propose our hypotheses for
their cause and effect.

First, we notice a tendency for repeated n-grams
in the predictions for all three models. Below is
one sample sentence from the English training set
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Hyperparameter Vi-En Zh-En
RNNbase
Vocabulary size 25,000 25,000
Use fastText embeddings False False
Hidden size 2,000 2,000
Learning rate (encoder) 0.0005 0.0005
Learning rate (decoder) 0.0005 0.0005
RNNattn
Vocabulary size 25,000 25,000
Use fastText embeddings False False
Hidden size 2,000 2,000
Learning rate (encoder) 0.0005 0.0005
Learning rate (decoder) 0.0005 0.0005
CNNattn
Vocabulary size 25,000 25,000
Use fastText embeddings False True
Hidden size 2,000 2,000
Learning rate (encoder) 0.0005 0.0005
Learning rate (decoder) 0.0005 0.0005

Table 3: Fine-tuned hyperparameter settings.

Model BLEU (Vi-En) BLEU (Zh-En)
RNNbase 22.02 20.90
RNNattn 25.37 20.79
CNNattn 25.02 22.10

Table 4: Final BLEU scores on the test set.

(T) and the corresponding output translation that the
RNNattn model produces (P).

T: in India and Nepal , I was introduced to the brick
P: in India and India , I was sent out to India , I was
sent out to the Indian , and I was in the Indian book
, I was in the Indian . . .

We theorize that this behaviour is caused by n-
grams that connect disproportionately frequently to
their own starting tokens within the same language.
In the example above, comma-delimited lists of
phrases starting with “I was” appear several times
in the training data, which might cause the decoder
to enter an infinite loop. In order to overcome this
issue, we could potentially introduce a penalty for
sub-sequences that have already been predicted dur-
ing the decoding phase.

Second, we notice that larger hidden sizes in the
context vector (up to a size of 2,000) consistently
score higher across all models and language pairs.
This is likely due to the models’ increased capac-
ity to store context information in the added dimen-
sions of the hidden context vector. However, this re-
lationship does not seem to be linear in hidden size,

as certain increases in the hidden size improve the
predictive accuracy of the model by a greater mar-
gin than others. For instance, increasing the hid-
den size of the Vi-En RNNattn model from 500 to
1,000 improves the BLEU validation score by al-
most 5 points, whereas further increasing the hidden
size from 1,000 to 2,000 only yields one additional
point of accuracy. Our hypothesis is that for each
language, there exists a minimum capacity required
to represent the bulk “meaning” of the language; af-
terwards, the effect of larger hidden vectors abates.

Using pre-trained fastText word embeddings
yields mixed results. Theoretically, pre-trained word
embeddings should help the models converge to the
optimal word embeddings faster (Qi et al., 2018). In
practice, integrating existing word embeddings only
improves model accuracy in a few specific settings.
It could be that the general-domain of the fastText
embeddings is simply not well-aligned with the do-
main of the given dataset. However, in the case of
the CNNattn models, the use of pre-trained word
embeddings does increase the model accuracy sig-
nificantly, from 17.59 to 19.87 BLEU score on the
Chinese validation set.

With regard to the search algorithm, we observe
that using beam search over greedy search consis-
tently improves the validation BLEU scores by a
margin of 0-2 points. Ultimately, the best results on
the validation set are achieved by setting the beam
width to five. Integrating the specialized length
penalty factor as described in Wu et al. (2016) does
not outperform the standard beam search, although
the resulting BLEU scores are still generally higher
than those based on greedy search.

Finally, we adopt a canonical method of halving
the learning rate after not seeing improvements for
20 steps during training (Goodfellow et al., 2016).
Using this technique, we are able to improve model
performance by approx. 1-2 points of BLEU score
for all of our models. We argue that this method
is successful because the global minimum is a very
narrow region within the solution space that is easily
overshot when the learning rate is too big. Using a
larger learning rate in the beginning however is still
necessary to sufficiently progress the model training
up to a certain point.
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Truth Translation

can we move that up a little bit ? can we move that up a little bit ?

i wanted them to know that we will be bearing witness to them
, and that we will do whatever we can to help make a difference
in their lives .

i want them to know that we’re going to make them , and we’re
going to be able to let them move their lives .

for the last 28 years , I’ve been documenting indigenous cul-
tures in more than 70 countries on six continents , and in 2009 I
had the great honor of being the sole <UNK> at the Vancouver
Peace Summit .

over the last 50 years , I’ve been documenting over the global
culture of about 100 countries on the continent , and so I got
my right to become the only black marriage in the town of the
World War .

Table 5: Sample translations from the Vi-En training set.

6 Summary and conclusion

In this paper, we introduce three model variants for
Vietnamese-English and Chinese-English machine
translation: RNNbase, RNNattn, and CNNattn.
Overall, we confirm that the use of the attention
mechanism consistently and significantly improves
model performance. In addition, evaluating the
trained models using beam search instead of greedy
search yields a few extra points of accuracy.

In general, our best model for the Vietnamese-
English dataset is the RNNattn model, with a
BLEU score of 25.37 on the Vietnamese test
split. For Chinese-English, our best model is the
CNNattn model, which achieves a BLEU score of
22.10 on the Chinese test set.

In the future, we will experiment with additional
hyperparameter optimization techniques, such as
varying the kernel size for the CNNattn model, or
employing the self-attention mechanism to exploit
connections between tokens in the same sequence.
A larger and more diverse dataset with enhanced
preprocessing would likely improve the predictive
accuracy of our best models as well.
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Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase repre-
sentations using RNN encoder-decoder for statistical
machine translation. CoRR, abs/1406.1078.

[Goodfellow et al.2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[Kalchbrenner et al.2014] Nal Kalchbrenner, Edward
Grefenstette, and Phil Blunsom. 2014. A convolu-
tional neural network for modelling sentences. CoRR,
abs/1404.2188.

[Koehn et al.2003] Philipp Koehn, Franz Josef Och, and
Daniel Marcu. 2003. Statistical phrase-based trans-
lation. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Com-
putational Linguistics on Human Language Technol-
ogy - Volume 1, NAACL ’03, pages 48–54, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

[Nallapati et al.2016] Ramesh Nallapati, Bing Xiang, and
Bowen Zhou. 2016. Sequence-to-Sequence RNNs for
Text Summarization. CoRR, abs/1602.06023.

[Papineni et al.2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A
Method for Automatic Evaluation of Machine Trans-
lation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02,
pages 311–318, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Post2018] Matt Post. 2018. A call for clarity in reporting
BLEU scores. CoRR, abs/1804.08771.

[Qi et al.2018] Ye Qi, Devendra Singh Sachan, Matthieu
Felix, Sarguna Janani Padmanabhan, and Graham
Neubig. 2018. When and why are pre-trained word
embeddings useful for neural machine translation?
CoRR, abs/1804.06323.

[Venugopalan et al.2015] Subhashini Venugopalan, Mar-
cus Rohrbach, Jeffrey Donahue, Raymond Mooney,

6

http://www.deeplearningbook.org


Trevor Darrell, and Kate Saenko. 2015. Sequence to
sequence - video to text. In The IEEE International
Conference on Computer Vision (ICCV), December.

[Vinyals and Le2015] Oriol Vinyals and Quoc V. Le.
2015. A neural conversational model. CoRR,
abs/1506.05869.

[Williams et al.2016] Philip Williams, Rico Sennrich,
Matt Post, and Philipp Koehn. 2016. Syntax-based
statistical machine translation. Synthesis Lectures on
Human Language Technologies, 9(4):1–208.

[Wu et al.2016] Yonghui Wu, Mike Schuster, Zhifeng
Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. 2016. Google’s Neural Machine Trans-
lation System: Bridging the Gap between Human and
Machine Translation. CoRR, abs/1609.08144.

[Zaremba and Sutskever2014] Wojciech Zaremba and
Ilya Sutskever. 2014. Learning to Execute. CoRR,
abs/1410.4615.

7


	Introduction
	Model architecture
	RNN encoder-decoder without attention
	RNN encoder-decoder with attention
	CNN-RNN encoder-decoder with attention

	Experiment settings
	Dataset
	Model parameters
	Scoring metric
	Search algorithms

	Results
	Ablation study
	BLEU scores

	Analysis
	Summary and conclusion

