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July 9, 2015

Abstract

The aim of this paper is to present a detailed overview of Abstract Meaning Representation
(AMR), a semantic representation language introduced by Banarescu et al. (2013). In order
to assess the various aspects of AMR, we first outline the nature and design principles
behind it. This includes an in-depth description of the AMR format and its content, as
well as a discussion of the limitations of AMR and primary remarks on annotation and
evaluation. The second part of the paper surveys the current state-of-the-art for computation
with AMRs, providing insights in AMR parsing, and current and future applications.

1 Introduction
Who did what to whom? A question that every human can easily answer in a given context, but
is very difficult for computers to analyze directly. For more than two decades, natural language
processing heavily relied on syntactic treebanks in order to enable computers to derive mean-
ing from language. Following the release of the first large-scale treebank, the Penn Treebank
(Marcus et al., 1993), many more syntactic treebanks have been developed for a wide variety of
languages, and used to build state-of-the-art natural language processing systems such as part-
of-speech (POS) taggers, parsers, semantic analyzers, and machine translation (MT) systems.

Moving from the analysis of grammatical structure to sentence semantics, however, we find
that statistical parsers are ill-suited for producing meaning representations. In semantic anal-
ysis, we often encounter complex structures that are impossible to capture within the limits
of tree structures. For example, semantic nodes will often be the argument of more than one
predicate, and it will often be useful to exclude semantically vacuous words (like particles or
complementizers), i.e. leave nodes unattached which do not add further meaning to the result-
ing representation.

To overcome this fundamental limitation and enable a more direct semantic analysis of
whole sentences, emerging research is shifting towards parsing with graph-structured represen-
tations. Just as syntactic treebanks were of significant importance to improve upon syntactic
parsers, current research on semantic parsing relies on sembanks: sets of English sentences
paired with their corresponding semantic representations.
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Typically, semantic parsing entails domain dependence: example application domains in-
clude ATIS, the Air Travel Information Service (Price, 1990), the Robocup Coach Language
CLang (Chen et al., 2003), or GeoQuery: A Database Query Application (Wong and Mooney,
2006). However, there is a growing need for larger, broad-coverage sembanks. To this end,
several projects have been initiated, including the Groningen Meaning Bank (GMB) (Basile
et al., 2012), UCCA (Abend and Rappoport, 2013), the Semantic Treebank (ST) (Butler and
Yoshimoto, 2012), the Prague Dependency Bank (Böhmová et al., 2001), and UNL (Uchida
et al., 1996; Martins, 2012).

Taking another step forward, Banarescu et al. (2013) recently started annotating the logi-
cal meaning of sentences in Abstract Meaning Representation (AMR) – single rooted, directed
graphs, that incorporate semantic roles, coreference, questions, modality, negation, and further
linguistic phenomena. By providing a substantial corpus and a correctable, logical semantic
input format, the creators of AMR are hoping to encourage significant advances in statistical
natural language understanding (NLU), natural language generation (NLG), and statistical ma-
chine translation (SMT), inter alia.

2 AMR formalism
The Abstract Meaning Representation (AMR) language is presented in Banarescu et al. (2013),
and described in more detail in the AMR annotation guidelines1. In a nutshell, AMR graphs
are rooted, labeled, directed, acyclic graphs (DAGs), comprising whole sentences. They are
intended to abstract away from syntactic representations, in the sense that sentences which are
similar in meaning should be assigned the same AMR, even if they are not identically worded.
By nature, the AMR language is biased towards English – it is not meant to function as an
international auxiliary language.

2.1 Format
AMRs can be written in three different notations. Traditionally, AMRs can be represented
as conjunctions of logical triples. For human reading and writing, the PENMAN notation
(Matthiessen and Bateman, 1991) is adapted. For computer processing, a conventional graph
notation is used. A basic example2 of all three notations is illustrated in Figure 1.

2.2 Content
As illustrated in the example, AMR introduces variables (graph nodes) for entities, events, prop-
erties, and states. Each node in the graph represents a semantic concept. These concepts can
either be English words (prince), PropBank framesets (say-01) (Palmer et al., 2005), or special
keywords. In PENMAN notation, (p / prince) refers to an instance p of the concept prince.
Edge labels denote the relations that hold between entities. For example, (p / prince :mod (l /
little)) denotes the modality of our prince being little. These tokens, including :mod or :arg0
(typically used for agents), are referred to as AMR role tokens. It is worth noting that entities
with multiple semantic roles are represented with only a single node in the graph. In such cases,
variables are re-used and re-entrancies are annotated in the graph.

1http://amr.isi.edu/language.html
2Taken from public Release 1.4 of the AMR Bank (1,562 sentences from The Little Prince; November 14,

2014; http://amr.isi.edu/download/amr-bank-v1.4.txt)



Abstract Meaning Representation 3

English sentence: “I do not understand”, said the little prince.

Logic format:

∃ s, p, l, u, -:
instance(s, say-01) ∧ instance(p, prince) ∧ instance(l, little) ∧ instance(u, understand) ∧
instance(-, -) ∧ arg0(s, p) ∧ arg1(s, u) ∧ (u, p) ∧ mod(p, l) ∧ polarity(u, -)

AMR format (PENMAN notation):

(s / say-01
:arg0 (p / prince

:mod (l / little))
:arg1 (u / understand-01

:arg0 p
:polarity -))

Graph format:

say

prince

little

understand

-

arg
0 arg1

m
od

arg0

polarity

Figure 1: Example sentence and equivalent meaning representations

In sum, AMR uses approximately 100 relations. There are frame arguments (:arg0, :arg1,
etc), general semantic relations (:age, :destination, :location, :name, . . . ), relations for quan-
tities (:unit, :scale, :quant), relations for date-entities (:day, :month, :time, . . . ), and relations
for lists (:op1, :op2, etc). In addition, AMR includes the inverses of all its relations (e.g. :arg-
0-of or :location-of ) and allows for reification, i.e. the modification of relations themselves.
Banarescu et al. (2013) give a comprehensive list of example AMRs for frame arguments, gen-
eral semantic relations, co-reference, inverse relations, modals and negation, questions, verbs,
nouns, adjectives, prepositions, named entities, copula, and reification. All further phenomena
are additionally covered in the AMR guidelines.

2.3 Limitations

In order to ensure a fast annotation process and obtain concise semantic representations, the
AMR formalism abstracts away from morpho-syntactic idiosyncrasies such as word category
or word order, and does not account for tense or number. Most function words (articles and
prepositions) are omitted. There are no universal quantifiers. Since AMR heavily relies on
Propbank framesets, it is subject to the corresponding Propbank constraints.
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2.4 Annotation

The AMR Bank corpus is manually constructed by human annotators. It is comprised of several
thousand English/AMR pairs, a subset of which is freely available for download3. To support
annotators at different levels of experience, a web-based power editor has been developed4. The
AMR Editor includes a manual, quick references, various examples with explanations, a search
function, as well as appropriate suggestions, providing a wide range of support for annotators
to choose the proper concepts, roles, and overall structure.

2.4.1 Evaluation

To enable the evaluation of whole-sentence semantic analysis, Cai and Knight (2013) introduce
Smatch (for semantic match), a metric that calculates the degree of overlap between two seman-
tic feature structures. With regard to AMR, it can be used to assess both semantic annotation
agreement rates, as well as automatic parsing accuracy.

As mentioned beforehand, AMRs can be represented as conjunctions of logical triples, tak-
ing one of these forms: relation(variable, concept), or relation(variable1, variable2). Take for
example the following two sentences and their corresponding logical triples:

(1) The girl is reading the book.
m

instance(a0, read) ∧ instance(a1, girl) ∧ instance(a2, book) ∧ arg0(a0, a1) ∧ arg1(a0, a2)

(2) The boy is holding the book.
m

instance(b0, hold) ∧ instance(b1, boy) ∧ instance(b2, book) ∧ arg0(b0, b1) ∧ arg1(b0, b2)

The Smatch score now computes the maximum match number of triples among all possible
variable mappings, and gets precision, recall, and F1 score. To obtain the variable mapping
which yields the highest F1 score, Smatch executes a brief search. For our example, we would
obtain the following variable mapping:

a0(read)–b0(hold) a1(girl)–b1(boy) a2(book)–b2(book)

Thus, there are matched and unmatched triples:

instance(a0, read) ∧ instance(a1, girl) ∧ instance(a2, book) ∧ arg0(a0, a1) ∧ arg1(a0, a2)
instance(b0, hold) ∧ instance(b1, boy) ∧ instance(b2, book) ∧ arg0(b0, b1) ∧ arg1(b0, b2)

We can compute:

F1(Precision,Recall) =
2× Precision× Recall

Precision + Recall
=

2× 3
5
× 3

5
3
5
+ 3

5

= 0.6

3http://amr.isi.edu/download.html
4http://amr.isi.edu/editor.html
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3 Algorithms and applications
The second part of this paper will survey the state-of-the-art for computation with AMRs. We
start by introducing the first approach to parsing English text into AMR graphs, before moving
on to cross-lingual applications of AMR, with a focus on AMR-based machine translation (MT).

3.1 Parsing

Flanigan et al. (2014) introduce the first approach to parse sentences into AMR, which requires
algorithms for alignment, structured prediction, and statistical learning. Their method is based
on a novel algorithm for finding a maximum spanning, connected subgraph, and approximates a
constrained optimization problem using Lagrangian relaxation. The statistical parameters of the
JAMR system5 are learned from the annotated English/AMR pairs in the AMR Bank corpus.
The system is evaluated using the Smatch score.

In order to automatically parse English into AMR, JAMR employs a two-part algorithm.
First, it identifies the key concepts using a semi-Markov model. Second, it identifies the re-
lations between the concepts by searching for the maximum spanning, connected subgraph
(MSCG). The MSCG algorithm returns the connected subgraph with the maximum sum of
edge weights among all connected subgraph of the input graph. It is thus similar to the widely
used maximum spanning tree (MST) tree described in Mcdonald et al. (2005). Lagrangian re-
laxation (LR) (Geoffrion, 1974; Fisher, 2004) is applied in order to preserve the linguistically
inspired constraints imposed by the AMR language.

Concept identification

In the given approach, an AMR parse is represented as a graph G = 〈V,E〉. To identify
concepts, an input sentence w is first segmented into contiguous spans. Afterwards, each span
is mapped to a graph fragment corresponding to a concept from a concept set F (or ∅, if no
concept is invoked by a given span). For example:

The
∅

girl

girl

was
∅

reading

read-01

the
∅

book

book

.

Like in the example, graph fragments are often single, labeled concept nodes, but can com-
prise multiple nodes and edges if applicable. Given a sequence of spans b and a sequence of
concept frames c, both of arbitrary length k, a labeling score can be computed as follows:

score(b, c;θ) =
k∑

i=1

θTf(wbi−1:bi , bi−1, bi, ci)

Each phrase wbi−1:bi is assigned a concept graph fragment ci ∈ clex(wbi−1:bi) ∪ {∅}. f
is a feature vector. Features are the probability of a fragment given words, the length of the
matching span (number of tokens), NER (binary; 1 if entity, 0 otherwise), and bias (binary; 1 if
concept graph from F , 0 otherwise).

5http://github.com/jflanigan/jamr
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Relation identification

In the second step of the algorithm, relations between concepts are identified by adding edges
among the concept subgraph fragments identified in the first step. The task is to construct a
subgraph G = 〈VG, EG〉 that is preserving, simple, connected, and deterministic. All four
constraints follow from the definition of AMR. A score to decompose by edges can be defined
with a linear parametrization:

score(EG;ψ) =
∑
e∈EG

ψTg(e)

For an overview of the feature set and further technical details, please refer to the original
paper by Flanigan et al. (2014). In conclusion, there are a number of subsequent steps ensuring
that the resulting graph G satisfied the imposed constraints: the initialization step ensures the
preserving constraint is satisfied, the pre-processing step ensures the graph is simple, and the
core algorithm ensures that the graph is connected.

Alignments

The semantic parser is trained on the set of annotated English/AMR examples contained in the
AMR Bank corpus. However, these annotations do not include alignment links between the
words in the input sentences and the corresponding concepts in the AMR graphs – for each
English sentence, one AMR graph is given, but without any information as to how one repre-
sentation was derived from the other. But, in order to train a semantic parser for AMR, we need
to know which spans of words in the input sentence invoke which concepts in the correspond-
ing graph, i.e. we need alignment links between each English token and its AMR representation.

To solve the alignment task, Flanigan et al. (2014) develop a heuristic aligner that uses a set
of rules to greedily align concepts to spans. For example, they define rules to account for named
entities, date entities, minus polarity tokens, quantities, or persons. Using the full set of rules,
the aligner achieves 92% precision, 89% recall, and 90% F1 score on a set of 200 hand-aligned
sentences from the training data. However, their method is restricted to the pre-defined set of
alignment rules, and thus will not automatically improve as more parallel AMR/English data
becomes available.

Overcoming this limitation, Pourdamghani et al. (2014) recently published an alternative
method for aligning English/AMR pairs at token level. Preceding the alignment phase, a series
of preprocessing steps is applied. Most importantly, this includes linearizing the AMR graphs
into strings and stemming all tokens into their first four letters.

The training phase is based on the IBM translation models and the definition of a genera-
tive model from AMR graphs to strings. Previously hidden alignment links are subsequently
uncovered using the Expectation-Maximization (EM) algorithm. In order to allow for sym-
metrical parameter learning during EM training, the objective function of the IBM models is
modified accordingly. Pourdamghani et al. (2014) report 86.5% and 83.1% alignment F1 score
on development and test set, respectively.
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3.2 Cross-lingual applications

This alignment problem is closely related to the problem of statistical machine translation
(SMT): the translation of text from one language to another, based on parameterized statis-
tical models. Machine translation was one of the first applications envisioned for computers
(Weaver, 1955), and remains a commercially and academically interesting challenge in natural
language processing (NLP). The first MT system was introduced by IBM in 1954, and a basic
word-for-word translation system. Since then, various approaches to machine translation have
been implemented, ranging from word-to-word translation, syntactic transfer, interlingual ap-
proaches, controlled language, and example-based translation to statistical machine translation.

Even though it was already claimed in the early stages of MT that a semantic model is
necessary to achieve human-like translation (Weaver, 1955), most research in the field was
concerned with phrase-based approaches to MT. Statistical phrase-based MT systems typically
rely on parallel corpora to efficiently estimate translation probabilities between two languages.
Given sufficient training data, phrase-based systems are then able to automatically resolve some
common ambiguities.

However, they operate under the assumption that surface phrases can be translated without
incorporating any notion of syntax or semantics. Thus, they are likely to fail when it comes to
processing non-local phenomena such as argument re-orderings across languages, deep embed-
dings, anaphora, or empty categories. The availability of syntactically-annotated, parallel data
has been steadily increasing over the past decades, allowing for syntactical information to be
directly integrated into data-driven MT systems. With regard to meaning representation, on the
other hand, many problems remain unsolved. Consider, for example, the following translation
using a state-of-the-art German→ English SMT system6:

Du fehlst mir. → You’re missing me.

While the translation might appear to be correct on the surface, it turns out to be wrong. In
the given input sentence, the correct translation would be, I miss you. The example illustrates
how SMT systems are frequently unable to preserve even the most basic meaning structures
when confronted with verbs that realize their arguments differently across two languages.

To tackle this issue, Jones et al. (2012) present the first semantics-based SMT system. Us-
ing a graph-structured meaning representation, the system first analyzes the source language
into the meaning representations, and subsequently decodes the meaning representations into
the target language. Similarly to AMR, the system assumes that meaning representations are
directed, acyclic graphs. Since there are no further restrictions with regard to the details of the
formalism, it is flexible enough to handle a number of existing meaning representations, e.g.
the language of the GeoQuery corpus (Wong and Mooney, 2006).

To manipulate the graph structures involved, Jones et al. (2012) use hyper-edge replacement
grammars (HRGs) (Drewes et al., 1997). In the original paper, they demonstrate that the pro-
posed systems is in fact able to capture semantic abstractions by analyzing the input text into
meaning and then back into text in the target language.

6Google Translate (May 25, 2015)
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Xue et al. (2014) investigate to which extent AMR could serve as such a transfer layer in
MT systems. By abstracting away from morpho-syntactical idiosyncrasies, AMR eliminates
several sources of cross-lingual differences, and it would be interesting to know to what extent
it was possible to obtain structurally compatible AMRs for a sentence in multiple languages7.

In a qualitative comparison, Xue et al. (2014) compare AMRs for English to Chinese and
Czech, and report three possible scenarios. First, translations of the same sentence are anno-
tated with structurally identical AMRs, i.e. both AMRs are perfectly aligned. Second, two
differing AMRs are obtained, but the differences are due to inconsistencies in the annotation
process. Theoretically, such mismatches could be reconciled by refining the annotation stan-
dards. Third, the resulting AMRs differ because of different lexicalizations in the input and
target language. This issue cannot be resolved unless a higher level of abstraction in the AMR
language is introduced. Interestingly, Xue et al. (2014) also find that there are more structurally
incompatible AMRs for Czech than for Chinese, when compared to the English counterparts.
Manual inspection of the annotated Czech data suggests that more than half of the sentences
profoundly differ from the English translations.

4 Summary and outlook
The Abstract Meaning Representation (AMR) formalism is rapidly emerging as an important
practical form of structured sentence semantics. Due to the availability of large-scale annotated
corpora, it has potential as a convergence point for NLP research. AMRs are rooted, labeled
graphs, capturing meaning on sentence level while abstracting away from morpho-syntactical
idiosyncrasies. Nodes in the graph denote semantic concepts, while edge labels denote the re-
lations that hold between concepts.

The AMB Bank corpus is manually constructed by human annotators and already comprises
several thousand sentences. Traditionally, AMRs can also be represented as conjunction of log-
ical triples. Based on this logical format, Cai and Knight (2013) define the Smatch score. It can
be used to evaluate inter-annotator agreement (IAA), as well as AMR parsing accuracy.

The first approach to automatic AMR parsing has been introduced by Flanigan et al. (2014).
Their algorithm first identifies the concepts using a semi-Markov model, and then the relations
between these by searching for a maximum spanning connected subgraph (MSCG). In order
to obtain English/AMR alignments in the pre-processing step, Flanigan et al. (2014) present
a heuristic aligner based on a pre-defined set of rules. Pourdamghani et al. (2014) propose a
statistical alignment model, which – unlike the heuristic approach – will automatically improve
as more data becomes available.

While the potential applications of AMR are manifold, current research is exploring the use
of AMR in statistical machine translation (SMT). Jones et al. (2012) present the first semantics-
based SMT, using a graph-structured meaning representation as transfer layer between the
source and the target language. Xue et al. (2014) subsequently investigate the use of AMR
as mediator between multiple languages, suggesting that a higher level of abstraction might be
necessary to account for lexicalization differences between languages.

7Structurally compatible AMRs refers to AMRs with all concepts and relations aligned.
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From here, there are many directions future AMR work might take. Most importantly,
further enhancing the AMR Bank corpus will lead to shared tasks on natural language under-
standing (NLU) and generation (NLG), thus advancing the field and driving new interests in
graph-based semantic parsing. Even though prototypes for AMR-based SMT systems already
exist, future improvements are to be expected at this end as well. Finally, the AMR language is
frequently subject to change – ultimately, it might include more relations, entity normalization,
quantification, or temporal relations. Additionally, a comprehensive list of more abstract frames
is imaginable.
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