
RNN/CNN-based natural language inference
(DS-GA 1011, assignment 2)

Melanie Tosik (mt3685)

October 2018

1 Overview

For the PyTorch implementation, please see: https://github.com/melanietosik/nl-inference.

In the experiments, we evaluate the following hyperparameters:

• Learning rate: 1e-3, 5e-4, 1e-4

• Size of the hidden dimension

– CNN: 50, 100, 200, 500

– RNN: 25, 50, 100, 250

• Dropout probability: 0.0, 0.2, 0.5

• Kernel size (CNN): 1, 2, 3

The best CNN model is trained using the following set of hyperparameters:

? Learning rate: 1e-3

? Size of the hidden dimension: 500

? Dropout probability: 0.0

? Kernel size: 2

The best CNN model achieves 71.5 accuracy on the SNLI validation set and consists of 1303003 trained
parameters (cf. cnn.pt.txt and log.cnn best.txt).

The best RNN model is trained using the following set of hyperparameters:

? Learning rate: 1e-3

? Size of the hidden dimension: 250

? Dropout probability: 0.0

The best RNN model achieves 72.8 accuracy on the SNLI validation set and consists of 1079003 trained
parameters (cf. rnn.pt.txt and log.rnn best.txt).

All models are trained using a batch size of 256, 8 worker threads, an embedding dimension of size 300, and
a log interval of 100. Except for the final/best model experiments, the models are trained for 5 epochs.

The word embeddings are the 1 million word vectors trained on Wikipedia 2017 released as part of fastText
(cf. wiki-news-300d-1M.vec.zip at https://fasttext.cc/docs/en/english-vectors.html).

1

https://github.com/melanietosik/nl-inference
https://fasttext.cc/docs/en/english-vectors.html

0 1 2 3 4 5
of epochs

30

40

50

60

70

80
tra

in
/v
al
id
at
io
n
ac
cu
ra
cy

Adam learning rate (CNN)

[1e-3] train
[1e-3] val
[5e-4] train
[5e-4] val
[1e-4] train
[1e-4] val

(a) Learning rate (CNN model)

0 1 2 3 4 5
of epochs

30

40

50

60

70

80

tra
in
/v
al
id
at
io
n
ac
cu
ra
cy

Adam learning rate (RNN)
[1e-3] train
[1e-3] val
[5e-4] train
[5e-4] val
[1e-4] train
[1e-4] val

(b) Learning rate (RNN model)

Figure 1: Learning rate for the Adam optimizer.

0 1 2 3 4 5
of epochs

40

50

60

70

80

90

tra
in

/v
al

id
at

io
n

ac
cu

ra
cy

Hidden dimensions (CNN)
[50] train
[50] val
[100] train
[100] val
[200] train
[200] val
[500] train
[500] val

(a) Hidden dimensions (CNN model)

0 1 2 3 4 5
of epochs

40

50

60

70

80

90

tra
in

/v
al

id
at

io
n

ac
cu

ra
cy

Hidden dimensions (RNN)
[25] train
[25] val
[50] train
[50] val
[100] train
[100] val
[250] train
[250] val

(b) Hidden dimensions (RNN model)

Figure 2: Size of the hidden dimension.

2 Results

Given the page limit, we can only briefly discuss the most relevant results. Please refer to the logging/ and
plots/ folders in the GitHub repository for the full set of experiments and results.

2.1 SNLI

We start by fine-tuning the learning rate for the Adam optimizer (torch.optim.adam). Figure 1 illustrates
the results for three different learning rates. For both the CNN and the RNN model, the PyTorch default of 1e-3
seems to work best. Most of the training and validation accuracy curves increase steadily at approximately
the same rate, indicating that the model is not overfitting to the training data too much.

Next, we can experiment with the size of the hidden dimension. The original SNLI paper1 specifies a
hidden dimensionality of 100. Therefore, for the CNN model, we evaluate 50, 100, 200, 500. Since the RNN

is bi-directional, we choose slightly lower dimensionalities of 25, 50, 100, 200. The results for both models
are shown in Figure 2. Both the CNN and the RNN model seem to benefit from a larger hidden size in terms
of validation accuracy. The CNN model also starts overfitting the larger the size of the hidden dimension.

1https://nlp.stanford.edu/pubs/snli_paper.pdf

2

https://nlp.stanford.edu/pubs/snli_paper.pdf

0 1 2 3 4 5
of epochs

45

50

55

60

65

70

75

80

85
tra

in
/v

al
id

at
io

n
ac

cu
ra

cy

Dropout probability (CNN)

[0.0] train
[0.0] val
[0.2] train
[0.2] val
[0.5] train
[0.5] val

(a) Dropout probability (CNN model)

0 1 2 3 4 5
of epochs

45

50

55

60

65

70

75

80

85

tra
in

/v
al

id
at

io
n

ac
cu

ra
cy

Dropout probability (RNN)

[0.0] train
[0.0] val
[0.2] train
[0.2] val
[0.5] train
[0.5] val

(b) Dropout probability (RNN model)

Figure 3: Dropout probability

To recap, our two best models are currently trained for 5 epochs, using the Adam optimizer with a learning
rate of 1e-3 and a hidden dimensionality of 500 and 250 for the CNN and RNN model, respectively.

Next we experiment with dropout, a regularization technique that randomly zeros out some of the neurons
in the network during the forward pass in order to reduce co-adaptability and increase the ability to gener-
alize to unseen data. Figure 3 illustrates the results when using a dropout probability of 0.0, 0.2, 0.5.
Somewhat surprisingly, adding a dropout layer did not improve model accuracy for either model.

For the final experiment, we try out different kernel sizes for the CNN model only. The results are illustrated
in Figure 4 (a). Using a kernel size of 1 does not seem to work well at all. The default kernel size of 3 from
the previous lab causes the model to overfit—the validation accuracy starts dropping around the beginning of
the last epoch while the training accuracy keeps increasing. A kernel size of 2 performs somewhere in between
the two previous settings and therefore seems to be the best choice for now. Intuitively, using bigrams over
trigrams also seems fitting given how short most sentences in the SNLI dataset are.

0 1 2 3 4 5
of epochs

50

55

60

65

70

75

80

85

tra
in

/v
al

id
at

io
n

ac
cu

ra
cy

Kernel size (CNN)
[1] train
[1] val
[2] train
[2] val
[3] train
[3] val

(a) Kernel size (CNN model)

0 1 2 3 4 5 6 7 8 9 10
of epochs

50

60

70

80

90

100

tra
in
/v
al
id
at
io
n
ac
cu
ra
cy

Accuracy (CNN vs. RNN)
[CNN] train
[CNN] val
[RNN] train
[RNN] val

(b) Best CNN vs. best RNN model

Figure 4: Kernel size (CNN) and best model performance (CNN vs. RNN)

Finally, Figure 4 (b) illustrates the training and validation accuracies for the best CNN and the best RNN model
after hyperparameter tuning. The CNN model is still overfitting, but achieves 71.5 accuracy on the SNLI
validation set when using early stopping. The RNN model learning curves seem a little more robust, which is
reflected in a final accuracy of 72.8 on the SNLI validation set.

3

Premise Hypothesis Relation

3 The little boy is jumping into a puddle on the street . The boy is outside . entailment
3 An older couple is resting on a bench . Two people are sitting next to each other . entailment
3 There is a street with buildings and one man in black

walking on the side of the road .
The buildings are corporate offices . neutral

7 An African American woman with 2 young girls . There is a mother with her daughters . neutral
7 A farmer gives a tour of his farm to local families . A farmer selling his farm . neutral
7 Female runners from Japan , Germany and China

are running side by side .
The runners are from the US . contradiction

Table 1: Correct and incorrect predictions of the best model (RNN) on the SNLI validation set.

Since there is no room for additional tables, please refer to the logs in the logging/ directory for the accuracy,
loss, and number of trained parameters for each individual model and experiment. The details of the two
best models are provided in cnn.pt.txt and rnn.pt.txt. The best model overall is the RNN model.

Finally, we can use the id2token mapping to reconstruct validation samples for which our best model made
correct or incorrect predictions. Table 1 shows three examples of correct and incorrect predictions.

It seems noteworthy that the incorrect predictions all have a neutral or contradiction relation. Since the
labels in the given SNLI data sets are fairly evenly distributed, this could be an indicator that entailment
relations between the premise and hypothesis are generally easier to classify than neutral or contradiction
pairs. Many of the neutral sentence pairs are also ambiguous and therefore difficult to classify correctly. For
example, given “An African American woman with 2 young girls.”, I would likely assume that “There is a
mother with her daughters.” as well.

The third incorrect sample prediction on the other hand should have been possible to classify. I think in
this case, the model might have failed to disambiguate between the pronoun “us” and the noun “us”, i.e.
the lowercase token for the country “US”. In the future, it would probably make sense to lowercase only the
beginning of each sentence during data preprocessing instead of the entire sentence.

2.2 MultiNLI

In order to evaluate the best SNLI models on the MultiNLI dataset, we can first split the mnli val.tsv

file into subsets for each genre using the split mnli.py script. Afterwards, run mnli.py will load the best
version of the specified model (CNN or RNN) and evaluate the accuracy on the genre-specific validation set.

Table 2 contains the validation accuracy for each genre for each model. In general, the SNLI models perform
much worse (approx. 30%) on the MultiNLI data sets.

CNN model RNN model

Fiction 43.42 47.94
Government 43.70 48.23
Slate 43.31 43.41
Telephone 45.87 47.76
Travel 44.50 46.13

Table 2: Validation accuracies on the MNLI dataset

Without fine-tuning the SNLI models on the domain-specific data sets, these results are hardly surprising.
Overall, the RNN model outperforms the CNN model on every single genre. This is in line with our previous
observation that the CNN model might be overfitting to the SNLI training data and thus might not be able
to generalize to new data sources as well as the RNN model. Among the 5 genres, it seems that the model
accuracies are highest for the Telephone category. One plausible explanation for this could be that the SNLI
premise-hypothesis sentences resemble simple, short, spoken language, and as such are most similar to the
models’ original training data.

4

	Overview
	Results
	SNLI
	MultiNLI

